If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36+b^2=64
We move all terms to the left:
36+b^2-(64)=0
We add all the numbers together, and all the variables
b^2-28=0
a = 1; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·1·(-28)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*1}=\frac{0-4\sqrt{7}}{2} =-\frac{4\sqrt{7}}{2} =-2\sqrt{7} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*1}=\frac{0+4\sqrt{7}}{2} =\frac{4\sqrt{7}}{2} =2\sqrt{7} $
| 6/30v-45/30=50/30 | | -3.14+-2d=-8.76 | | H(t)=-5t | | 8x-13+x=5x+7 | | -1+5(5-3x)=-81 | | x4(-5)x=-9 | | 16=8+-4w | | 4x+28-16=180 | | -3.2a=-25.8 | | 3t-3.09=4.71 | | 12+2x=3x=1 | | -4(q-19)=12 | | -3/4(-x+50)-6=0.4(3x+20) | | (6-y)(5y-9)=0 | | 2.8/9.8=14.4/n | | C=ฯr | | 3.9=g+3.8/3 | | y/3+-17=-13 | | g/7-5=-6 | | 4w+10=6w+10-13 | | 4=q+5/3 | | 2w-70=w-33 | | 9(w-5)9w=+9 | | -3.74=b/2+-1.8 | | 119=7(5-3x) | | 7y+12=-3 | | v/1+4=2.8 | | W=300/l | | -1/5=2/3x-1/2 | | 3/4(4x+-6x)=75 | | c/3-15=-12 | | -4(b-16)=-12 |